Cask Gauging in Germany - without and with Slide Rules (31.07.2019),

11.08.2019

Werner H. Rudowski

Kepler's Fassregel (Cask Rule)

When in November 1613 the famous astronomer Johannes Kepler married his second wife - his first had died two years earlier - he bought a number of casks of wine. These came from Lower Austria to Linz and were directly sold on the banks of the Danube-river for a reasonable price because of the good vintage that year. After four days the merchant came with his dipping rod to measure the volume in the casks stored in his cellar. Kepler was surprised that this was done without considering the shape of the cask (Fig. 1 is taken from [3]). He doubted that this method could be correct. Fig. 2 demonstrates that two obviously very different casks but with the same length of a dipping rod "d" would give wrong results. Kepler decided to study this problem and to find a more exact and convenient way according to geometric principels [1, 2].

Fig. 1: Mennher, Valentin: Arithmetique seconde (Antwerpen, 1556)

ArithmeumLibrary /Rheinische Friedrich-Wilhelms-Universität Bonn

Fig. 2

Fig. 3

At this time integral calculus was unknown. So Kepler looked for a simple approximate formula. His idea is shown in Fig. 3. The true value of the area below the cask curvature $A B C$
and the middle line of the cask GHI will be between the two rectangles GEFI and GACI . From the drawing one can see that AEB is smaller than ABD. Kepler concluded that the bung radius BH should be taken twice and the head radius Cl only once to come to a more exact value. His simple rule for the volume of a cask is

$$
V \approx 1 / 3 \pi h\left(2 R^{2}+r^{2}\right)
$$

Kepler's rule gives exact values for casks with spherical curvatures and very close values for parabolas. Kepler published his considerations in 1615 in his book NOVA STEREOMETRIA DOLIORVM VINARIORVM (New Volume Calculation of Wine Casks). Fig. 4 shows the title page.

Later authors, like Oughtred in England and Lambert in Germany, used the same formula.

Fig. 4

Why do casks bulge?

Everything would be easier if casks were cylindrical. Then calculating the volume and content of partly filed casks would be much quicker and accurate. However, casks bulge because the hoops must press the staves together to make the cask tight. Before this the staves must be bent to the correct shape. Bending is done by using water and heat. According to Johann Friedrich Benzenberg (German astronomer, physical scientist and publisher) [4] the curvature of a cask is defined as ($D-d$) : L or $2 B: L$ should be at least $1 / 30^{\text {th }}$ of the length up to a maximum ${ }^{1 / 6}{ }^{\text {th }}$, in Fig. 5 the ratio 2B: L.

Fig. 5 also shows different shapes of a cask. The broken line represents a cask in the form of a spheroid or the $1^{\text {st }}$ variety (England), resp. Klasse 1 on German slide rules. Klasse 4 ($4^{\text {th }}$ variety) is valid for casks consisting of two middle frustums of a cone. Benzenberg's favourite form of a bended stave was the conchoid (in Fig. 5 the dotted line is exaggerated). As wooden staves cannot be bent sharply in the middle, Klasse (variety) 4 will, in practice, not be found.

Fig. 5

The bung-/head ratio is determined by the shape of the staves, i.e. the relation between the centre and the ends (B and H in Fig. 6). The dimensions B and H may differ between the staves, but the ratio B: H must be constant for all staves. To achieve this a Cooper uses a gauge/-template. The man in the foreground in Fig. 1 possibly uses such a template. For the curvature of a stave and thus for the variety of the cask the dimensions between B and H (for example " x " or " y " in Fig. 6) are determined. They must also keep the same ratio as B to H.

Fig. 6

Varieties

In practice it is not possible for a Cooper to build a cask exactly like a Middle Frustum of a Spheroid ($1^{\text {st }}$ variety/ Klasse 1), or of a Parabolic Spindle $2^{\text {nd }}$ variety/ Klasse 2) etc. In order to find a way to calculate the volume of casks in England four varieties were defined and the gauger had to decide which one would the best fit to the relevant cask (Fig. 7a-b):
$1^{\text {st }}$ variety $=$ Middle Frustum of a Spheroid
$2^{\text {nd }}$ variety $=$ Middle Frustum of a Parabolic Spindle
$3^{\text {rd }}$ variety $=$ Middle Frustum of two Parabolic Conoids
$4^{\text {th }}$ variety $=$ Middle Frustum of two Cones

Fig. 7a-b

Plani:fereometrif(d)es

2atictulucal.

Befdreifung unb Gebraư eines Snftrumente6, weld̆ee geoühntide Reçnungen verridtet, ferner ben flacens und
 widfte verificbener Ränber in cinanber verwanbelt u. f. w.

> unb zugleid atb

Lineal, Dreicat, Maaßfitab, Zranêporteur, Propor: tionalgirtel uno Sogaritfmentafel
bient.
 Des tcis.

Fiir bie Werffatten ber \{rtillerie, $\mathfrak{F n g e n i e u r e , ~ B a u s ~}$

 etläutert unb mit neuen 2olitommenbeiten verfeten
von

geprifftem Geometer.

Wit ciner इeidgnung in ©teinbruct unb einer Zabelle.

1824.

Casks of the first variety contain more than all others with the same length, head and bung diameter. Casks of the fourth variety contain less than all the others.

As far as it is known today Eduard Harkort [5, pages 130-137] was the first author in Germany who proposed a slide rule with rules for the calculation of casks. During a stay in England he had noticed the wide spread use of slide rules in many fields. And he found a description in a small booklet by Andrew Mackay:
Description and Use of the Sliding Rule in Arithmetic and ..., [6]. Mackay's book described a hinged Coggeshall rule, a Ship Carpenter's Slide Rule and a 4slide Excise Rule. Harkort adopted the idea of a hinged rule with a slide in one of the legs. Fig. 8 shows the title page and Fig. 9 a drawing of both faces of his Schieblineal. Harkort also adopted the scale arrangement A, B, C, D (D shifted by 4) and some chapters about gauging. On the first side of the second leg he introduced many tables which he thought helpful for users in many applications (Fig. 9). His method for cask calculation will be explained later.

Fig. 8

With regard to varieties Harkort also adopted the English custom with 4 varieties, but called them "Klasse".

Klasse 1: Staves are considerably bent
Klasse 4: Staves are straight between bung and head, i.e. two frustums of cones

Klasse 2 and 3: Intermediate values between Klasse 1 and 2 determined by the degree of bending.

Fig. 9

Three methods to determine the volume and content of casks

1. Eichen or Aichen in old German books means calibration by filling up a cask with water. This should be a very precise method, however, it depends largely on the gauger i. e. on how carefully he fills the liquid measure.
2. The stereometrical way by taking key dimensions of the cask and calculating by hand or with a slide rule according to various formulas. In Germany this method was rarely used as it was regarded as rather complicated and needed mathematical knowledge.
3. Gauging with gauging rods. Although rather inaccurate this method was widely used in Germany. Many books and articles have been published about gauging rods.

The subject of this article will be the stereo metrical method.

The stereo metrical method

It was common practice to find the diameter of a cylinder with the same volume as the cask. But the way chosen was quite different between German authors.

Kepler's Fassregel of 1615 was obviously unknown to later authors. Some mentioned Johann Heinrich Lambert (1728 -1777) who had also used the same formula. It is astounding that even in the early years of the 19 ${ }^{\text {th }}$ century Benzenberg [4] in 1811 and Bleibtreu [7] in 1833 stated that until the $17^{\text {th }}$ century gaugers used the arithmetic average of head and bung diameter for a cylinder having the same volume as a cask. Later two frustums of cones (i.e. $4^{\text {th }}$ variety or Klasse 4) were taken. Both methods give results with an error of 7 to 10 percent.

Benzenberg and Bleibtreu obviously did not know of the methods proposed by other earlier authors. For example, the 1782 book by Ignaz Pickel, a teacher of mathematics at the academic lyceum in Eichstädt, on the design of Visierstäbe (gauging rods) [8] discussed ways of finding the mean diameter of a cask. He stated that the usual way to take the arithmetical average of bung and head diameter gives a 5 percent too low reading. Also using two frustums of cones gives a too small volume of the cask. But the curvature of a cask is more like part of a circle or an ellipsis or a parabola. So he proposed two middle frustums of a parabolic spindle ($2^{\text {nd }}$ variety) and his calculation finally gave two similar formulas for the mean diameter: $\mathrm{d}_{\mathrm{m}}=\mathrm{d}_{\mathrm{H}}+2 / 3\left(\mathrm{~d}_{\mathrm{B}}-\mathrm{d}_{\mathrm{H}}\right)=\mathrm{d}_{\mathrm{m}}=2 / 3 \mathrm{~d}_{\mathrm{B}}+1 / 3 \mathrm{~d}_{\mathrm{H}}$

$$
\text { or } d_{m}=0.7 \mathrm{~d}_{\mathrm{B}}+0.3 \mathrm{~d}_{\mathrm{H}}
$$

Pickel had carefully measured many different casks by filling them with water and found a difference of only 0.35 percent. His main task was to design appropriate Visierstäbe (gauging rods). Here he faced the problem of a large number of the different measures for volume, which varied from town to town. However, Visierstäbe are not the subject of this article.

Benzenberg studied two casks very carefully: The first was an 8 Ohm (ca. 1100 litre) Rheingauer Stückfass with the inner dimensions: Length $=1490 \mathrm{~mm}$

Bung diameter $=1050 \mathrm{~mm}$
Head diameter $=855 \mathrm{~mm}$

The second, a Burgundy cask with the inner dimensions: Length $=748 \mathrm{~mm}$
Bung diameter $=630 \mathrm{~mm}$
Head diameter $=569 \mathrm{~mm}$

All dimensions are average values of at least two measurements. It is remarkable that as early as 1811 the Millimetre (Linien) and Litre were used. In the following only the Rheingauer Stückfass will be described. It had the shape of a conchoid (Muschellinie), (see Fig. 5). With Lambert's (= Kepler's) formula the diameter of a cylinder with the same volume is:

$$
\begin{aligned}
D_{\text {cyl }} & =2 / 3 D+1 / 3 d \\
& =2 / 3 * 1050+1 / 3 * 855 \\
& =700+285=985 \mathrm{~mm}
\end{aligned}
$$

The calculated volume of the cask: $\quad V=9,85^{2} * \pi: 4 * 14,9$
$=1135.4$ litre

By filling the cask with water Benzenberg found the true value was 1145 litre, i.e. the stereo metrical method gave 9.6 litre or 0.85% less. He concluded that the shape was responsible for this difference. A check with a modified formula using the surface areas of the bung and the head resulted in a volume of 1145.2 litre and thus exactly the true value.

Later, in 1833 Bleibtreu [7] theoretically examined a cask shaped like a part of a circle. If the staves are not bent too much he found out that the error would only be about 1% if in Lambert's (Kepler's) formula the surfaces of the head and bung were used.

In 1824 Eduard Harkort published his Plani=stereometrischesSchieblineal [5] which incorporated the instructions of Andrew Mackay's book Description and Use of the SLIDING RULE ... [6]. For finding the diameter of a cylinder with the same content Harkort had chosen the English way: depending on the difference between bung and head diameter and on the variety a certain number had to be added to the head diameter to find the mean diameter. On the back of one slide of English Excise slide rules one will find lines giving the required number for three varieties, i.e. without the $4^{\text {th }}$ variety which in practice will not be applicable (Fig. 10). Mackay also came up with a formula to calculate the extra amount to be added to the head diameter (Fig. 11).
In 1824 Eduard Harkort published his Plani=stereometrischesSchieblineal [5] which incorporated the instructions of Andrew Mackay's book Description and Use of the SLIDING RULE ... [6]. For finding the diameter of a cylinder with the same content Harkort had chosen the English way: depending on the difference between bung and head diameter and on the variety a certain number had to be added to the head diameter to find the mean diameter.

On the back of one slide of English Excise slide rules one will find lines giving the required number for three varieties, i.e. without the $4^{\text {th }}$ variety which in practice will not be applicable (Fig. 10). Mackay also came up with a formula to calculate the extra amount to be added to the head diameter (Fig. 11). Harkort had placed these factors as a table on one leg of his Schieblineal (Fig. 12). An example how to use the Schieblineal will be given later. The calculated numbers do not always correspond with the lines on the slide rule. The calculated numbers for several differences of diameter are marked in colour on Fig. 10. At $6^{\prime \prime}$ the correction factors for more or less than 6 " difference are marked.

In order to find the content of a cask, it is previously reduced to a cylinder, by encreasing the head diameter. For this purpose lines are placed on the rule, adapted to the several varieties of casks, and are to be uscd as follows. Find the difference between the bung and head diameter on the line of inches, and opposite thereto, on the line answering to the variety of the cask, is a number, which added to the head diameter, the sum will be a mean diameter, or that of a cylinder of the same length and capacity as the given cask. Or if the difference between the bung and head diameters, be multipliced by .7 for the first variety; . 65 for the second; . 6 for the third; and .55 for the fourth variety; and the product added to the head diameter, the sum will be the mean diameter of the cask. In those casks where the difference between the lung and diameters, iṣ less than six inches, it is customary to use the following multipliers, viz: .68 for the first variety; .62 for the second; .55 for the third; and .5 for the fourth variety.

Fig. 11

Fig. 12

How to measure the key dimensions of a cask?

To measure the inside bung diameter is easy. It is more complicated to find the correct inside head diameter, which can only be measured from the outside. Depending on the (generally unknown) thickness of the head, the size of the cask and the shape of the cask the inside diameter must be increased by a small amount. We do not find this correction in either Benzenberg or Bleibtreu. However, Harkort, did consider it and again copied the numbers he had found in Mackay's paper, just using the names of similar sized German casks types:

$$
\begin{aligned}
& \text { Usual allowance for casks less than } 120 \text { Quart (} 30 \text { Gallons): } \\
& \qquad \begin{array}{ll}
\text { between } 120 \text { and } 200 \text { Quart (} 30-50 \text { Gallons): } & 3 / 10 \text { inch } \\
\text { above } 200 \text { Quart ((} 50 \text { Gallons): } & 5 / 10 \text { up to } 6 / 10 \text { inch }
\end{array}
\end{aligned}
$$

These numbers can be found on Harkort's Schieblineal (see Fig. 12).

It is even more difficult to find the correct inside length which can only be measured from the outside. From this the normally unknown thickness of the two heads has to be subtracted. In many cases the heads are thicker in the middle and bevelled at the circumference. Benzenberg suggests ignoring this as the error will be part of the general error. Gaugers usually assumed the thickness of the heads to be the same as the staves.

Oval shaped casks

Sometimes, if the space in a cellar is limited, oval shaped casks were used. It was assumed that the bung and the head surface areas are elliptical. Therefore the mean diameter of circles with the same area is the square root of the product of both axes. Benzenberg and Bleibtreu both gave two ways to calculate the volume of oval casks. Unfortunately, Benzenbergs first method contains significant errors.

Fig. 13

The second one gives only a formula which Bleibtreu later explained in detail. Fig. 13 shows the dimensions used by Bleibtreu. As the width of a cask at the bung cannot be measured it is assumed that the ratio of the two axes will be same as for the head. Therefore the width will be $\mathrm{n} / \mathrm{m}^{*} \mathrm{k}$.
The diameters of circles with the same area as the ovals are:

$$
\mathrm{d}_{\text {Head }}=\mathrm{Vm}^{*} \mathrm{n} \text { and } D_{\text {Bung }}=\mathrm{V}^{\mathrm{n}} / \mathrm{m} * \mathrm{k}^{*} \mathrm{k}
$$

With Kepler's formula we get as mean diameter of the cylinder:

$$
\begin{aligned}
d \text { cyl. } & =1 / 3 V m^{*} n+2 / 3 V^{n} / m * k^{*} k \\
& =1 / 3 V m^{*} n+2 / 3 k V^{n} / m \\
\text { The volume of the cask is: } \quad V & =\pi / 4 L\left(1 / 3 V m^{*} n+2 / 3 k V^{n} / m\right)^{2} \\
& =\pi / 4 L\left(1 / 9 m^{*} n+4 / 9 k^{2 n} / m+4 / 9 k^{*} n\right) \\
& =\pi / 4 L^{*} n / m\left(1 / 9 m^{2}+{ }^{4} / 9 k^{2}+{ }^{4} / 9 k^{*} m\right) \\
V & =\pi / 4 L^{*} n / m(1 / 3 m+2 / 3 k)^{2}
\end{aligned}
$$

This means that the volume of an oval cask can be calculated with the greater axis of the bung and head and then multiplied with the ratio of the width and the height.

How exact is the stereo metric method?

The above mentioned authors generally stated that, for many reasons an exact volume calculation of a cask is not possible. A difference of 1 to 2% should be accepted by merchants, excise officers and others. If a more exact result is required then they recommend filling a cask with water and measuring the volume. However, this is not straightforward and also still prone to small errors. There are eight reasons for errors:

1. It is difficult to find a correct variety of the cask's shape. This depends very much on the experience of the gauger.
2. Kepler's formula only gives exact results for casks of the $1^{\text {st }}$ variety/ Klasse 1 . If the curvature is an arc or like variety 2 or 3 , the calculated volume will be exaggerated by 0.5 to 1%.
3. As explained above, the measurement of inside length and head diameters are difficult to take and are often wrong.
4. Nearly all casks are irregular; depending very much on the area where they were built.
5. Most casks are not round on the inside, but a irregular polygon because the Cooper did not shape the staves.
6. All casks will be more or less distorted when filled or after long-term storage. In this case the measurement of the vertical bung diameter will be too small.
7. Tartar on the bottom reduces the measured height.
8. And lastly, already Coopers can be devious. Bleibtreu stated that they make the bottom stave deeper in the middle so that the bung diameter measured will be greater. And they may do the same with the heads so that when measuring the diagonal with a gauging rod, it is longer.

Partly filled casks

Casks may stand horizontal or upright, generally named lying or standing. Especially lying casks must be absolutely level and horizontal when being measured. Benzenberg (1811) and Bleibtreu (1833) did not deal with standing or with oval casks. Both concentrated on just one cask - the Rheingauer Stückfass. The latter referred mainly to Benzenberg's method and the detailed measurement of just that cask.

Also to determine the content of a partly filled cask Benzenberg used the method of a cylinder with the same volume as the cask. This is another fault in his article because the volume of the upper and lower portion of the cask is not being considered (blue areas in Fig. 14).

Fig. 14

In the drawing line $a-b$ is the surface of the liquid and $c-d$ is the height measured with the gauging rod. At this time this was called the Weintiefe (Wine Depth). c - f was named the Pfeil (arrow) and is the Weintiefe minus half the difference between the bung diameter and the diameter of the cylinder.

The area below the surface is calculated with the help of the Segmenttafeln (Table of Segments) prepared by a Herr Obereit. In his book Benzenberg printed all the tables. Fig. 15 shows the page with values used for the following example. The tables are prepared for a circle with a diameter = 1000 and the area $=1$. Depending on the length of the Pfeil the area of the segment can be found. For the same dimensions as the above described as a Rheingauer Stückfass Benzenberg gave an example with a Weintiefe $=933 \mathrm{~mm}$.

825	'24626	860	1,9149054	895	43
26	34	61	57876	96	733
27	439	62	666	97	6490
28	535		25+42	98	4213
29	8631	64	841	99	9471904
830	10,887273	865	099192900	900	60
31	82884		0,9201588		8718
32	-18891817	67	1024		10,949,770
33	0,8901325	68	188		0,95023:4
34	-	69.	019227483	4	4
835	2027	870	0,9236066		17328
. 36	7	72	4.6		2.774
37	3913	72	53	7	321
38	485				
39	95789	74	700	9	¢
840	1018967245	875	78	910	0,95542
41	7656	76.	8693	1	
42	8586	77	0,92953	12	7
43	0,899514	78	0,93036	13.	91
44	0,9004397	79	0,931198	14	8307
845	13	880	3202	15	
46	22829	81	28536		912
47	32008	82	3676	7	
48	$41: 63$	83	419	18	1132
49	0,9050293	84	53136	19	618
850	-0,905939	885	612	920	9625
51	68478	86	693	21	
52	星	87	774	22	
53	8656	8	85507	23	45
54	0,9095568	89	0,9393522	24	525
855	c,9104547	890	0,940150		
56	13500	91	09458	26	
57	22428		173	27	
58	31329	3	25265	28	
	0,914020	4	33120	29	0,968

Fig. 15

		3nhatr	unter,				(tutere
1033		1134		62	1110	1109	1
1025		1133		61		8	1
- 1019		1132		59	8	7	1
1015	1135	1131	+4	57	${ }^{\prime} 6$	6	0
1011	34	30	4	55	4	5	-1
1007	33	29	4	954	3	4	
1003	32	28	4.	53	3	3	-
1000	31	27	4	52	2	2	\bigcirc
998	29	26	3	51	1	1	-
995	28	25	3	49	0	-	0
93.	27	24	3	47	1099	1099	0
90	26	23	3	45		98	-
	25	22	3	44	96	97	1
85	23	21	2	43	95	96	. 1
82	22	20	2	41	95	95	-
	I120	1119	1	940			
- 78	19	18	1	39	92.	93	1
75	18	17	1	37	91	92	1
74	17	16	1	35	90	9 T	1
72	16	15	1	34	88	90.	2
970	15	14	1	33	1087	1089	2
69	13	13	-	31	87	88	1
67	12	12	-	30	85	87	2
65	11	11	\bigcirc	29	84	86	2
64	10	10	-	927	83	85	2

Fig. 16
of only 2 litres or 0.2% (see Fig 16).

Benzenberg had drained the full cask in steps: first 50 litres in quantities of 1 litre, then 300 litres in quantities of 5 litres and finally 500 litres in amounts of 10 litres. He stopped taking measurements when the cask still contained 300 litres. Fig. 16 shows only the first of three tables with underlined figures of his above example. After drawn off 1 litre - content now 1134 litres - he measured a Weintiefe (Wine Depth) of $1033 \mathrm{~mm}, 17 \mathrm{~mm}$ less than the bung diameter. He gave calculated values only from a Weintiefe (Wine Depth) of 1015 mm , i.e. 982.5 mm for the cylinder, very close to the diameter of 985 mm . As explained before his method of using a cylinder for partly filled casks for the volume calculation is wrong. This explains why he gave no calculated values for Weintiefen (Wine Depths) above 1015 mm , and that the differences between calculation and measurement become greater if the Weintiefe comes close to the diameter of the circle.
Later in his book Benzenberg gave figures for small Weintiefen: 17 mm : content 1 litre

$25 \mathrm{~mm}:$	"	2 litre
$31 \mathrm{~mm}:$	$"$	3 litre
$35 \mathrm{~mm}:$	$"$	4 litre
$39 \mathrm{~mm}:$	"	5 litre etc.

Cask calculation with Harkort's Schieblineal

Harkort's Plani=stereometrisches Schieblineal based on English hinged rules with the D-scale shifted by "4" did not have special scales or gauge marks to determine the content of casks. The volume calculation for a cask is done on the C and D-scales with the help of the gauge mark 1.13 representing V^{4} / π. Harkort gave the following example for a cask with the variety/ Klasse 1 (see also Fig. 17):

Bung diameter 19"
Head diameter 16"
Difference $\quad 3^{\prime *} 0.7=2.1$ (see table R on the second leg, Fig. 17)
Mean diameter of cylinder 18.1"
Length 21 "
Fig. 17 shows the solution on the Schieblineal as approximately 5400 cubic inches. It has to be remembered that D is a single radius scale shifted by " 4 " and C is a double radius scale. And one should also note that C normally would be placed on the stock and D on the slide. The correct result for the volume is $5,403.39$ cubic inches.

Fig. 17

To find the ullage of lying or standing casks Harkort again used Mackay's alternative solutions "without the rule" (table " S " on Fig. 17). For lying casks the rule is:

1. Divide the Weintiefe /Wine Depth (WT) by the bung diameter d_{B}
2. Add or subtract 0.5 from the quotient
3. Divide the sum by " 4 "
4. Add ${ }^{W T} / d_{B}$ to this quotient
5. Multiply the new sum (ullage factor) with the volume of the full cask.

In our language: Corr. Factor $=\mathbf{5} / 4 * W T / d_{B}+(-) 0.125$

For the above example with a Weintiefe of 14 " the ullage is:

$$
\begin{aligned}
\text { Ullage } & =(5 / 4 * 14 / 19-0.125) * 5403 \\
& =(1.25 * 0.7368-0.125) * 5403 \\
& =(0.9211-0.125) * 5403 \\
& =0.7960 * 5403 \\
\text { Ullage } & =4301 \text { cubic inches }
\end{aligned}
$$

On the Schieblineal the multiplication "Correction Factor * Volume" of the cask can be carried out on the A and B scales. Harkort has checked this procedure with Benzenberg's measurements of the Rheingauer Stückfass and found a very good match.

For the ullage of standing casks:

$$
\text { Corr. Factor }=11 / 10 * \mathrm{WT} / \mathrm{L}+(-) 0.05
$$

Harkort made one Schieblineal for his own use and to demonstrate to interested parties. It is very doubtful that anymore were ever fabricated although Harkort did offer them in his book for 2 or 3 Prussian Thaler. He was an unsteady and restless man with a lot of other interests [9].

Johann Georg Stökle's first Polymeter

In 1838 J. G. Stökle invented his first Polymeter, a complicated arrangement of scales inspired by Michael Eble's Dendrometer [10, 11]. It is a wooden instrument with a glued-on paper strip, 1150 mm long. Divisions and numbers are very accurate but most probably made by hand. All the numbers are written sideways - a custom of old German slide rules - which means that the instrument should be held and used uncomfortably in a vertical position. It is not known how many Polymeter of this type were made. Up to now only one is known to have survived.

A schematic drawing of the Polymeter (Fig. 18) shows the sophisticated arrangement of the scales.

Fig. 18

In Stökle's limited directions for use there is one example for cask gauging (Fig. 19). The dimensions of the cask are:

Bung diameter $34^{\prime \prime}$
Head diameter 28"
Length 4'
A variety is not mentioned. Required is the content in old German measures (but modified to "Litres"): Stützen (15 I), Maaß (1.5 I) and Cubic feet.

De beiben Dutiditere find aro fufammen u tecto.
and do biefe beiofi Duthmefier um 6 Dieferten
fo foimmt biet Die 3 abl 2 3t 62 und es itit affo die
der
oder aucturd Der B sinie 321110

Fig. 19

The instructions are to add the two diameters and count up one- third of their difference. This gives $34+28+2=64$. Place this number on the F -scale opposite to the length in feet on the D-scale (see Fig. 20). At the mark * in the middle of the Polymeter the results are found on the A-scale $=57{ }^{5} / 10$ Stützen or 575 Maa and on the B -scale $=32^{1 / 10}$ cubic feet.

Remarks: Stökle's arrangement of the scales was very sophisticated and with displacements - replacing some multiplications/ conversions. The exception is the F - scale which is a single radius one shifted by V^{4} / π. All the others are double radius and in addition the D -scale is inverted. His formula for the mean diameter complies with Kepler's resp. Lambert's rule, but is doubled. The foot contains 10 inches with 30 mm each.

Johann Georg Stöckle's second Polymeter

In 1843 Stöckle, now with a "ck" in his name, invented a completely different Polymeter [12]. He now lived in Kreuzlingen on the Swiss side of Lake of Constance. The title page of his instructions for use is shown in Fig. 21. But this new Polymeter was not his own invention; it was a copy of Harkort's Schieblineal of 1824. Even the manual was mostly copied and Harkort's name is never mentrioned. Stöckle's only contribution was that he altered Harkort's Prussian measures into those of Baden/ Switzerland [9].

Quite a few Polymeters made by Stöckle can be found in German and Swiss museums and in private collections. They were mostly made by different companies:

Fig. 21

- POLYMETER•FABRIK•VON •STÖCKLE
- POLY-METER-FABRIK in KREUZLINGEN
- POLYMETER-FABRICATION.VON.J.WACKER . in. EMMISHOFEN
- POLYMETER FABRIK von C: KAUFMANN ET COMP. IN KREUZLINGEN Zusatz: OBRIGKEITLICH GEPRÜFT

The earliest known Polymeter of the new generation, possibly a prototype, is in the small Museum Rosenegg in Kreuzlingen. It is signed and dated 1844 (Fig. 22a, b, c) and made of brass. Unfortunately, the slide is missing. In the same museum there is also a pocket version made from boxwood (Fig. 23 a, b). The manual also offers Polymeters in ivory and in ebony. In 2007 a Polymeter in ebony with the slide of German silver was sold at David Stanley in England.

The title page the manual lists the following sales prices:

- Boxwood 2 fl 45 kr (2 Gulden and 45 Kreuzer)
- Ebony 5 fl
- Brass 11 fl
- Ivory 13 fl

Remark: Stöckle's examples in the manual mention $241 / 2 \mathrm{kr}$ for 1 pound of sugar.

Fig. 22a, b, c

Fig. 23a, b

Stöckle' last manual appeared in 1849 in Elberfeld, today part of Wuppertal. Only a few years later, in 1851, B. Knipp and E. Leisse published a manual for a POLYMETER or Rechnungs-maßstab [13]. The authors had obviously based this manual on Stöckle's. There are several Polymeters known to be in museums and private collections which fit the 1851 description (Fig. 24 a, b). They are all unsigned and differ from Stöckle's design in some details. These Polymeters are designed for the Prussian system of measurements.

Fig. 24a, b

A comparison with English Excise Officer's slide rules

By 1684 Thomas Everard had already invented the first slide rule especially designed for cask gauging. Over a period of nearly two and a half centuries his slide rule was improved and altered. In total most probably tens of thousands were made in England, mainly for excise officers. Quite a lot can be found in museums but most are in private collections.

In Germany no slide rule was ever made purely for cask gauging. As described above only the Schieblineal by Harkort and the different designs of Stöckle's Poymeter bear instructions for gauging a cask but without any special scales. However, the gauging of a cask was equally important in Germany. The usual way was to use Visierruten (gauging rods), a rather inaccurate method which Johannes Kepler had criticized back in 1613. Many German authors such as Stephan Weiss have written about Visierstäbe or Visierruten (gauging rods) [14].

Acknowledgements:

My thanks to David Rance for correcting and improving my English and to the Arithmeum for the image of Figure 1 and the permission to publish it.

Literature:

[1] www.kepler-gesellschaft.de/.../kepler...kepler.../kepler...kepler.../309-mathematik.htm.
[2] Kepler, Johannes, NOVA STEREOMETRIA DOLIORVM VINARIORVM; Linz, 1615
[3] Mennher, Valentin: Arithmetique seconde; Antwerpen, 1556
[4] Benzenberg, Dr. Johann Friedrich: Die Rechenkunst und Geometrie des Großherzogthums Berg; Düsseldorf, 1811
[5] Harkort, Eduard: Plani-stereometrisches Schieblineal. Beschreibung und Gebrauch ...; Verlag Johann Peter Bachem, Köln, 1824
[6] Mackay, Andrew: Description and Use of the Sliding Rule in Arithmetic ...; Second Edition, Edinburgh/ London, 1811
[7] Bleibtreu, L. K., Die Visier-Kunst oder theoretisch-praktische Anleitung zum Visieren der Fässer; Karlsruhe, 1833
[8] Pickel, Ignaz: Abhandlung von Verbesserung und allgemeinem Gebrauch der Visierstäbe; Eichstädt, 1782
[9] Rudowski, Werner: Scheffelt \& Co, Frühe logarithmische Recheninstrumente im deutschen Sprachraum; Bochum, 2012
[10] Stökle, J.G.: Gebrauchs-Anweisung für das Poly-Meter, Singen 1838
[11] Rudowski, Werner: Das Polymeter von Stökle, in www.Recgenschieber.org/ Alte Beiträge, 01. Mai 2018
[12] Stöckle, J. Georg: Polymeter, Beschreibung und Gebrauch eines Instrumentes ... Herausgegeben von C. Kauffmann \& Comp., Belle =Vue, bei Constanz, 1843
[13] Knipp und Leisse: Gebrauchs=Anweisung des POLYMETER oder Rechnungs=Maaßstabes..., Berlin, 1851
[14] Weiss, Stephan: Visierinstrumente zur Volumenbestimmung - ein Überblick; in www.mechrech.info/publikat/Visierinstrumente

